F261	-0.02983 (12)	0.5217 (3)	0.6135 (2)	0.0489 (12)
F262	0.05591 (14)	0.6402 (2)	0.6726 (2)	0.0492 (14)
F263	0.06092 (13)	0.5995 (2)	0.55039 (14)	0.0470 (14)
S3	0.20796 (5)	0.72672 (10)	0.50009 (6)	0.0355 (5)
C31	0.2775 (2)	0.7765 (4)	0.4347 (2)	0.030 (2)
C32	0.3377 (2)	0.8588 (4)	0.4615 (2)	0.031 (2)
C321	0.3409 (2)	0.9212 (4)	0.5411 (2)	0.040 (3)
F321	0.2797 (2)	0.9954 (2)	0.55249 (15)	0.052 (2)
F322	0.4002 (2)	1.0021 (3)	0.55167 (15)	0.059 (2)
F323	0.3463 (2)	0.8321 (2)	0.59911 (13)	0.050 (2)
C33	0.3961 (2)	0.8866 (4)	0.4139 (2)	0.031 (2)
C34	0.3946 (2)	0.8369 (4)	0.3391 (2)	0.034 (2)
C341	0.4593 (2)	0.8614 (4)	0.2889 (2)	0.045 (2)
F341†	0.4887 (4)	0.9801 (5)	0.2991 (5)	0.103 (4)
F342 †	0.5143 (3)	0.7784 (7)	0.3037 (4)	0.102 (2)
F343 †	0.4404 (2)	0.8516 (10)	0.2154 (2)	0.102 (2)
F344	0.4726 (14)	0.7590 (15)	0.2444 (15)	0.103 (4)
F345	0.4467 (10)	0.9612 (22)	0.2411 (14)	0.102 (2)
F346	0.5225 (6)	0.8874 (34)	0.3272 (6)	0.102 (2)
C35	0.3330 (2)	0.7639 (4)	0.3105 (2)	0.034 (2)
C36	0.2746 (2)	0.7349 (4)	0.3572 (2)	0.032 (2)
C361	0.2070 (2)	0.6631 (4)	0.3196 (2)	0.040 (2)
F361	0.2145 (2)	0.6448 (3)	0.24294 (14)	0.057 (2)
F362	0.1965 (2)	0.5425 (3)	0.34738 (15)	0.059 (2)
F363	0.14385 (15)	0.7312 (3)	0.3245 (2)	0.0683 (15)
		• •	• •	• •

† Major components of the disordered CF3 groups.

Table 2. Geometric parameters (Å, °)

C1-C16	1.513 (5)	C12—C13	1.395 (5)
C1—S2	1.834 (4)	C13—C14	1.387 (5)
C1—S3	1.842 (4)	C14C15	1.407 (5)
C1-S1	1.897 (4)	C15-C16	1.375 (5)
\$1—C11	1.759 (4)	S2-C21	1.789 (4)
C11-C12	1.378 (5)	\$3C31	1.790 (4)
C11C16	1.383 (5)		
C16-C1-S2	117.4 (2)	C11-C12-C13	115.9 (3)
C16—C1—S3	118.2 (2)	C11-C12-C121	120.8 (3)
\$2-C1-\$3	104.0 (2)	C14-C13-C12	121.6 (3)
C16-C1-S1	88.0 (2)	C13—C14—C15	121.7 (3)
\$2-C1-S1	114.4 (2)	C16-C15-C14	115.9 (3)
\$3-C1-S1	115.0 (2)	C15—C16—C11	122.1 (3)
C11—S1—C1	74.4 (2)	C15-C16-C1	138.4 (3)
C12-C11-C16	122.7 (3)	C11-C16-C1	99.5 (3)
C12-C11-S1	139.2 (3)	C21-S2-C1	104.3 (2)
C16—C11—S1	98.1 (3)	C31-S3-C1	102.1 (2)

This work was supported by the Deutsche Forschunggmeinschaft and the Fonds der chemischen Industrie. EP is grateful to the Stiftung Stipendienfonds des Verbands der chemischen Industrie for a Fellowship.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55892 (21 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1032]

References

- Edelmann, F. T. (1992). Comments Inorg. Chem. 12, 259-284.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Version 4. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1992). SHELXL-92. Program for crystal structure refinement. Univ. of Göttingen, Germany.
- Whitmire, K. H., Roesky, H. W., Brooker, S. & Sheldrick, G. M. (1991). J. Organomet. Chem. 402, C4–C7.

0108-2701/93/051028-04\$06.00

Acta Cryst. (1993). C49, 1028-1031

Structure of a Bromine Derivative of Isostegane

GEORGE R. CLARK

Department of Chemistry, University of Auckland, Auckland, New Zealand

(Received 4 August 1992; accepted 1 December 1992)

Abstract

The structure determination establishes that the crystals are $(3aS^*, 13aS^*, 8aR^*, 8bR^*)$ -9-bromo-6,7,-10,11-tetramethoxy-3a,4,13,13a-tetrahydrodibenzo-[4,5;6,7]cycloocta[1,2-c]furan-1(3H)-one.

Comment

Dibenzocyclooctadiene lignan lactones are of considerable interest because of their pronounced therapeutic activity (Ward, 1982). Co-workers in this Department have been studying the synthesis of such compounds, and have oxidatively coupled dimethylmatairesinol with thallium tristrifluoroacetate and boron trifluoride etherate to give an isostegane whose structure we have established by an X-ray diffraction study (Cambie, Clark, Craw, Rutledge & Woodgate, 1984). The 9-bromo derivative (I) was also prepared (Craw, 1984), and its X-ray structure has now been determined to evaluate the geometric changes consequent upon bromination, and to verify the absolute stereochemistry of the molecule by use of the anomalous dispersion of the Br atom.

The crystals contain two molecules of compound and one molecule of dichloromethane solvent per asymmetric unit. Fig. 1 depicts the molecular struc-

© 1993 International Union of Crystallography

Monoclinic

ture and atomic numbering of molecule A. The overall geometry of molecule B closely resembles that of molecule A. The absolute stereochemistry is that shown in Fig. 1. The internal consistency of bond lengths and angles is not especially good although the maximum difference in distance [C(10')-O(10')] is only 5σ . Contributing factors may be the magnitude of the standard deviations (owing to the lowish number of observations per refined variable - a consequence of having two molecules per asymmetric unit), the highish temperature factors for some outer atoms, and the relatively weak diffracting properties of the crystals. It is also noted that eight intermolecular contacts are shorter than 3.4 Å, with a particularly short approach of 3.13 Å of O(6') to the solvent C atom. Minor adjustments to the molecular geometry may be a result of the tight crystal packing. No significant distortions are evident in the vicinity of the Br atom. When the geometry is compared with the parent isostegane and the corresponding stegane (Cambie, Clark, Craw, Rutledge & Woodgate, 1984), we find that the only significant variation is the C(6')—O(6') bond length of average 1.51 Å, compared with 1.42 Å in the isostegane and 1.41 Å in the stegane. No particular significance is placed upon this difference, especially as O(6') is the atom making a close approach to the dichlorocarbene which could conceivably be a very weak hydrogen bond. The aromatic planes are twisted relative to each other by -67.7 (molecule A), -71.2 (molecule B), -57.7 and 63.4° in the present compound, the isostegane and the stegane, respectively.

Fig. 1. The molecular geometry, atomic numbering and absolute stereochemistry.

Experimental

Crystal data

 $C_{22}H_{23}BrO_6.0.5CH_2Cl_2$ Mo radiation $M_r = 505.80$ $\lambda = 0.71069 \text{ Å}$

Monoclinic	Cell parameters from 25
<i>P</i> 2 ₁	reflections
a = 9.028 (1) Å	$\theta = 13.11 - 14.75^{\circ}$
<i>b</i> = 11.069 (2) Å	$\mu = 2.05 \text{ mm}^{-1}$
c = 23.465 (2) Å	T = 294 (1) K
$\beta = 102.12 (1)^{\circ}$	Needle
$V = 2292 \text{ Å}^3$	$0.41 \times 0.32 \times 0.22$ mm
Z = 4	Orange
$D_x = 1.466 \text{ Mg m}^{-3}$	0
$D_m = 1.47 (1) \text{ Mg m}^{-3}$	
Density measured by flota-	
tion in aq. KCl/KI	

Data collection

Nonius CAD-4 diffractome-	$R_{\rm int} = 0.018$
ter	$\theta_{\rm max} = 25^{\circ}$
$2\theta/\omega$ scans	$h = -10 \rightarrow 10$
Absorption correction:	$k = -13 \rightarrow 0$
empirical	$l = 0 \rightarrow 26$
$T_{\rm min} = 0.9045, T_{\rm max} =$	3 standard reflections
0.9990	monitored every 100
1359 measured reflections	reflections
3526 independent reflections	intensity variation: -
2048 observed reflections	•
$[I > 3\sigma(I)]$	

Refinement

Refinement on F	$w = 2.2868/(\sigma^2 F)$
Final $R = 0.063$	$+0.001001F^2$)
wR = 0.067	$(\Delta/\sigma)_{\rm max} = -0.117$
S = 3.06	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
2048 reflections	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$
242 parameters	Atomic scattering fac-
H-atom parameters not re-	tors from SHELX76
fined	(Sheldrick, 1976)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	y	z	U_{ea}
Molecul	e A			~
Br	0.1746 (2)	0.00000	0.22358 (8)	
O(1')	-0.3034 (15)	-0.2963 (14)	-0.0813 (6)	0.082 (4)
C(1)	0.2660 (19)	-0.3246 (16)	-0.0303 (7)	0.049 (5)
O(2)	-0.3031 (13)	-0.4404 (12)	-0.0117 (5)	0.065 (4)
C(3)	-0.2344 (19)	-0.4554 (16)	0.0486 (8)	0.052 (5)
C(3a)	-0.0989 (17)	-0.3665 (18)	0.0550 (7)	0.046 (4)
C(4)	0.0246 (18)	-0.3386 (17)	0.1208 (7)	0.051 (5)
C(4a)	0.1333 (18)	-0.2927 (15)	0.1211 (7)	0.043 (4)
C(5)	0.2500 (18)	-0.3803 (16)	0.1303 (7)	0.048 (4)
O(6')	0.5184 (14)	-0.4243 (13)	0.1362 (6)	0.070 (4)
C(6)	0.3959 (17)	-0.3440 (15)	0.1307 (6)	0.040 (4)
C(6')	0.478 (2)	-0.559 (2)	0.1395 (11)	0.083 (7)
O(7′)	0.5881 (13)	-0.1968 (12)	0.1314 (5)	0.063 (4)
C(7)	0.4332 (19)	-0.2236 (17)	0.1277 (7)	0.048 (5)
C(7')	0.632 (2)	-0.071(2)	0.1447 (10)	0.083 (7)
C(8)	0.3178 (19)	-0.1373 (16)	0.1219 (7)	0.049 (5)
C(8a)	0.1682 (17)	-0.1704 (14)	0.1172 (6)	0.035 (4)
C(8b)	0.0532 (17)	0.0757 (15)	0.1060 (6)	0.037 (4)
C(9)	0.0497 (17)	0.0171 (16)	0.1468 (7)	0.045 (4)
O(10')	-0.0529 (13)	0.1975 (11)	0.1815 (5)	0.062 (3)
C(10)	-0.0458 (17)	0.1136 (15)	0.1376 (7)	0.040 (4)
C(10 ['])	0.029 (3)	0.302 (3)	0.1833 (11)	0.102 (8)
O(11')	-0.2361 (12)	0.2242 (11)	0.0759 (5)	0.053 (3)
C(11)	-0.1450 (18)	0.1249 (17)	0.0839 (7)	0.049 (4)

variation: -5%

REGULAR STRUCTURAL PAPERS

C(11')	-0.351 (2)	0.2255 (18)	0.0249 (8) 0.063 (5)	Cl(1S) - C(S)	1.67	
C(12)	-0.1460 (17)	0.0341 (14)	0.0428 (6	0.036 (4)	$Cl(2S) \rightarrow C(S)$	1.74	
C(12a)	-0.0497 (15)	-0.0632 (14)	0.0534 (6) 0.031 (4)			
C(13)	-0.0642 (17)	-0.1619 (15)	0.0080 (7) 0.045 (4)	O(2) - C(1) - O(1')	120.1 (16)	126.6 (19)
C(13a)	-0.1775 (18)	-0.2632 (17)	0.0205 (7) 0.047 (5)	C(13a) - C(1) - O(1')	132.7 (18)	125.9 (20)
					C(13a) - C(1) - O(2)	107.1 (14)	107.4 (15)
Molecul	e B				C(3) - O(2) - C(1)	109.2 (13)	112.5 (15)
Br	0.0185 (2)	0.1437 (2)	0.34281 (7)	C(3a)-C(3)-O(2)	101.0 (13)	102.0 (14)
O(1')	0.5625 (15)	0.4495 (13)	0.6331 (6) 0.077 (4)	C(4) - C(3a) - C(3)	112.5 (14)	113.0 (14)
C(1)	0.451 (2)	0.485 (2)	0.5986 (8	0.066 (5)	C(13a) - C(3a) - C(3)	99.1 (12)	97.5 (13)
O(2)	0.3865 (14)	0.5936 (12)	0.5984 (5)) 0.067 (4)	C(13a) - C(3) - C(4)	115.9 (16)	114.1 (14)
C(3)	0.267 (2)	0.6101 (17)	0.5504 (8)) 0.060 (5)	C(4a) - C(4) - C(3a)	106.1 (13)	107.7 (12)
C(3a)	0.3089 (19)	0.5176 (17)	0.5050 (7	0.050 (5)	C(5)-C(4a)-C(4)	116.2 (15)	116.7 (14)
C(4)	0.1698 (17)	0.4864 (17)	0.4539 (7) 0.048 (4)	C(8a) - C(4a) - C(4)	123.4 (15)	124.5 (15)
C(4a)	0.2314 (17)	0.4411 (15)	0.4035 (7)) 0.041 (4)	C(8a) - C(4a) - C(5)	120.2 (15)	118.3 (15)
C(5)	0.2583 (18)	0.5301 (15)	0.3619 (7) 0.046 (4)	C(6) - C(5) - C(4a)	118.9 (15)	119.4 (15)
O(6′)	0.3650 (14)	0.5755 (13)	0.2759 (6	0.066 (4)	C(6') - O(6') - C(6)	115.2 (15)	114.5 (14)
C(6)	0.3279 (16)	0.4956 (16)	0.3173 (6	0.039 (4)	O(6') - C(6) - C(5)	123.4 (15)	124.2 (16)
C(6')	0.303 (2)	0.6990 (19)	0.2776 (9	0.064 (6)	C(7) - C(6) - C(5)	121.7 (15)	120.1 (16)
O(7′)	0.4442 (15)	0.3533 (13)	0.2673 (6	0.071 (4)	C(7)-C(6)-O(6')	114.8 (15)	115.6 (14)
C(7)	0.3739 (18)	0.3757 (16)	0.3133 (7) 0.042 (4)	C(7') - O(7') - C(7)	115.9 (14)	119.4 (16)
C(7')	0.507 (2)	0.238 (2)	0.2617 (9	0.079 (6)	O(7')-C(7)-C(6)	116.6 (15)	114.4 (15)
C(8)	0.3501 (18)	0.2933 (15)	0.3504 (7	0.044 (4)	C(8) - C(7) - C(6)	118.7 (16)	121.6 (16)
C(8a)	0.2807 (18)	0.3243 (15)	0.3982 (7	0.045 (4)	C(8)—C(7)—O(7')	124.7 (16)	124.0 (16)
C(8b)	0.2564 (16)	0.2230 (14)	0.4377 (6) 0.034 (4)	C(8a) - C(8) - C(7)	121.5 (16)	120.8 (16)
C(9)	0.1513 (17)	0.1350 (18)	0.4164 (6) 0.041 (4)	C(8)-C(8a)-C(4a)	118.8 (15)	119.7 (15)
O(10′)	0.0280 (12)	-0.0557 (11)	0.4306 (5) 0.052 (3)	C(8b)C(8a)C(4a)	123.1 (15)	123.5 (14)
C(10)	0.1337 (17)	0.0340 (14)	0.4515 (7)) 0.041 (4)	C(8b) - C(8a) - C(8)	118.0 (15)	116.6 (14)
C(10')	0.099 (2)	-0.154 (2)	0.4025 (9)) 0.076 (6)	C(9)—C(8b)—C(8a)	121.2 (13)	118.9 (13)
O(11')	0.1931 (12)	-0.0765 (11)	0.5383 (5)	0.053 (3)	C(12a) - C(8b) - C(8a)	123.4 (14)	120.7 (14)
C(11)	0.2132 (17)	0.0250 (14)	0.5066 (7)) 0.042 (4)	C(12a) - C(8b) - C(9)	115.2 (14)	120.3 (14)
C(11')	0.257 (2)	-0.0760 (18)	0.5997 (8)	0.065 (5)	C(8b)—C(9)—Br	118.2 (12)	123.5 (13)
C(12)	0.3240 (18)	0.1152 (16)	0.5313 (7)	0.048 (5)	C(10)—C(9)—Br	117.0 (12)	116.4 (12)
C(12a)	0.3423 (17)	0.2151 (15)	0.4943 (7)) 0.040 (4)	C(10)-C(9)-C(8b)	124.6 (14)	120.0 (13)
C(13)	0.4472 (17)	0.3105 (15)	0.5220 (7)) 0.045 (4)	C(10') - O(10') - C(10)	118.3 (16)	110.4 (12)
C(13a)	0.3589 (18)	0.4136 (16)	0.5473 (7)) 0.047 (5)	O(10')-C(10)-C(9)	121.9 (13)	120.6 (13)
~ .					C(11) - C(10) - C(9)	118.8 (15)	121.0 (14)
Solvent	molecule				C(11)-C(10)-O(10')	119.2 (14)	118.3 (14)
C(S)	0.2862	0.1290	0.7394	0.116	C(11') - O(11') - C(11)	116.1 (14)	117.8 (13)
Cl(1 <i>S</i>)	0.1172	0.0620	0.7268		O(11') - C(11) - C(10)	117.0 (15)	118.3 (14)
Cl(2S)	0.2834	0.2578	0.6968		C(12) - C(11) - C(10)	118.1 (15)	121.3 (15)
					C(12) - C(11) - O(11')	124.9 (14)	120.3 (13)
	-	• • ?		_	C(12a) - C(12) - C(11)	122.0 (14)	116.5 (14)
	Table 2. Bon	d distances (A	.) and ang	les (°)	C(12) - C(12a) - C(8b)	121.3 (14)	120.9 (15)
		Mala		Molecule P	C(13) - C(12a) - C(8b)	119.8 (14)	123.6 (15)
C(0)_P		1010100		1 997 (15)	C(13) = C(12a) = C(12)	118.8 (12)	115.4 (13)
C(1) = 0	14	1.924	(13)	1.88/(15)	C(13a) - C(13) - C(12a)	110.1 (13)	110.8 (12)
0(2) - 0	(1)	1.21 (2) 2)	1.22 (2)	C(3a) - C(13a) - C(1)	101.7 (15)	99.0 (15)
0(2)-0	(1) (1)	1.42 (<i>4</i>)	1.33 (3)	C(13) - C(13a) - C(1)	116.3 (14)	116.0 (14)

C(13) - C(13a) - C(3a)

Cl(2S) - C(S) - Cl(1S)

C(9)—Br	1.924 (15)	1.887 (15)
C(1) - O(1')	1.21 (2)	1.22 (2)
O(2)—C(1)	1.42 (2)	1.33 (3)
C(13a)—C(1)	1.46 (2)	1.53 (3)
C(3)—O(2)	1.43 (2)	1.40 (2)
C(3a)—C(3)	1.55 (2)	1.58 (3)
C(4)—C(3a)	1.58 (2)	1.58 (2)
C(13a)—C(3a)	1.49 (2)	1.52 (2)
C(4a)—C(4)	1.51 (2)	1.49 (2)
C(5)—C(4a)	1.41 (2)	1.44 (2)
C(8a) - C(4a)	1.40 (2)	1.38 (2)
C(6)—C(5)	1.38 (2)	1.38 (2)
C(6)—O(6')	1.403 (19)	1.41 (2)
C(6') - O(6')	1.54 (3)	1.48 (2)
C(7) - C(6)	1.38 (2)	1.40 (2)
C(7) - O(7')	1.41 (2)	1.39 (2)
C(7') - O(7')	1.46 (3)	1.41 (3)
C(8) - C(7)	1.40 (2)	1.31 (2)
C(8a) - C(8)	1.38 (2)	1.44 (2)
C(8b)-C(8a)	1.46 (2)	1.50 (2)
C(9)—C(8b)	1.41 (2)	1.38 (2)
C(12a) - C(8b)	1.387 (19)	1.39 (2)
C(10)-C(9)	1.36 (2)	1.42 (2)
C(10) - O(10')	1.400 (19)	1.393 (18)
C(10') - O(10')	1.36 (3)	1.49 (2)
C(11) - C(10)	1.39 (2)	1.34 (2)
C(11) - O(11')	1.36 (2)	1.380(18)
C(11') - O(11')	1.41 (2)	1.44 (2)
C(12) - C(11)	1.39 (2)	1.45 (2)
C(12a) - C(12)	1.37 (2)	1.44 (2)
C(13) - C(12a)	1.51 (2)	1.48 (2)
C(13a) - C(13)	1.59 (2)	1.58 (2)
· · · · /		

son and difference Fourier methods. Inversion of atomic coordinates followed by least-squares refinement returned a significantly higher R factor (0.069), and therefore the absolute stereochemistry is that given by the listed atomic coordinates and represented in Fig. 1.

H atoms were not located. The structure was solved by Patter-

113.0 (13)

111.1

113.8 (14)

The crystalline sample was generously supplied by R. C. Cambie, P. A. Craw, P. S. Rutledge and P. D. Woodgate of the Chemistry Department, University of Auckland, New Zealand.

Lists of structure factors, anisotropic thermal parameters, least-squaresplanes data and intermolecular contacts < 3.4 Å have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55899 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HU1024]

1030

References

- Cambie, R. C., Clark, G. R., Craw, P. A., Rutledge, P. S. & Woodgate, P. D. (1984). Aust. J. Chem. 37, 1775-1784.
- Craw, P. A. (1984). Private communication.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Ward, R. S. (1982). Chem. Soc. Rev. pp. 75-125.

Acta Cryst. (1993). C49, 1031-1032

Structure of 2-(2'-Thienyl)pyridine at 193 K

RATNA GHOSH AND S. H. SIMONSEN

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 15 September 1992; accepted 10 November 1992)

Abstract

The molecular geometry of the thiophene and pyridine rings is very similar to other derivatives. Both rings are planar and almost in the same plane. The slight twist between the two planes arises from the intramolecular short contact between S and N. The C4'-C5' bond between the thiophene and pyridine rings is a partial double bond as a result of conjugation.

Comment

2-(2'-Thienyl)pyridine (Figs. 1 and 2) (Aldrich) crystallizes from methanol solution in the non-centrosymmetric space group $P2_12_12_1$. The rotation of 4.48° around the C2-C2' bond joining the thiophene and pyridine rings results in a conformationally chiral molecule. The twist between the two rings may be attributed to the short intramolecular contact between S and N (N···S = 2.933) Å; the sum of the radii = 3.35 Å). The bond C2–C2' [1.469(3) Å] between the thiophene and pyridine rings is shorter than a C-C single bond (1.54 Å), implying a resonance between the rings. The C5'-C4' and C3'-C2' distances of 1.360(5) and 1.369(4) Å, respectively, are slightly longer than a double bond, and the C4'-C3' distance of 1.407 (4) Å is shorter than a single bond. The C-C and C-S bonds in the thiophene ring are in good agreement with those in 6-phenyl-4-(2-thienyl)-1H-pyrimidin-2-one (Tenon, Ebby, Degny, Viani & Bodot, 1988), 2-(5-methyl-3-thienyl)-2H,5Hpyrazolo[4,3-c]quinolin-3-one (Nakai, 1990) and 2-(5methyl-2-thienyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one (Shiro, 1990). The molecular geometry of the six-membered ring is very similar to that found in 4aminopyridine (Chao & Schempp, 1977), 2-amino-4-

0108-2701/93/051031-02\$06.00

Fig. 1. View of C₉H₇NS showing the labelling of the non-H atoms. Thermal ellipsoids are shown at 30% probability levels; H atoms are drawn as small circles of arbitrary radii.

Fig. 2. Packing diagram viewed down the b axis.

Experimental	
Crystal data	

Z = 4

C₉H₇NS Mo $K\alpha$ radiation $M_r = 161.22$ $\lambda = 0.71073 \text{ Å}$ Orthorhombic Cell parameters from 30 reflections $P2_{1}2_{1}2_{1}$ a = 5.769 (3) Å $\theta = 18.66 - 30.06^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ b = 8.793 (3) Å T = 193 Kc = 15.695 (6) Å Rectangular block V = 796.2 (6) Å³ $0.64\,\times\,0.29\,\times\,0.24$ mm $D_x = 1.345 \text{ Mg m}^{-3}$ White

© 1993 International Union of Crystallography